UNIT I CASE STUDY

Case study — the Next Gen POS system, Inception
-Use case Modeling - Relating Use cases —
include, extend and generalization - Elaboration -
Domain Models - Finding conceptual classes and
description classes — Associations — Attributes —
Domain model refinement — Finding conceptual

class Hierarchies - Aggregation and Composition

Phases in UP

Establish the ability io
build the systam wilhin

Build the befa version of
the system.

consirainis.
Establish thal the Elaboration
syslem is viable.
Functional Requi t
Inception Lse ;q:: e
Damain model
Feasibilfy sfudy \
Business case = Address Risks
Scope 1] Planfreplan
LCatimation
Risk assessment Design mode!
Candidate archieciura Archifeciural baseline

),

<

Construction

New code
Refactoning
Addiextend use cases
Plan/replan

Rall out a fully-
functional system to
custormnar.

Transition

Optimization
Bug fixes
Production
release

Inception

A feasibility study
Is there a project in there?

What's the vision, scope & business case?

Remarks on Inception

Supplementary Specifications, Vision, Glossary
Use Case Model

Most use cases written in brief format; 10-20% of cases written in fully

dressed format
Most influential and risky quality requirements identified

First version of the Vision and SS documents

What is Inception?

* Inception is the initial short step to establish a common vision and basic scope

for the project

Include analysis of perhaps 10% of the use cases,

Analysis of the critical non-functional requirement,

Creation of a business case, and

I

Preparation of development environment so that programming can start in the following

elaboration phase

Vision: What do we want? Determine primary scenarios as Use Cases
Scope: What do we include and not include?

Business case: Who wants it and why?

Questions in Inception

* Projects require a short initial step

in which the following kinds of questions are explored

= Whait is the vision and business case for this project — Feasible?
— Buy and/or build this system?
= Rough unreliable range of cost ? Is it $10K, $100K, millions?

— Should we proceed or stop?

— Do the stakeholders have basic agreement on the vision of the project, and is it worth

investing in serious investigation?

What you get in Inception?

Defining the vision

Obtaining an order-of-magnitude (unreliable) estimate

— It requires doing some requirements exploration.

Purpose of the inception phase is

- fi ir n ner. iev i r

Most requirements analysis occurs during the elaboration phase,

— In parallel with early production quality programming and testing

How Long is Inception?

Inception phase should be relatively short for most projects

— One or a few weeks long.

On many projects, if it is more than a week, then the point of inception has been

missed

Inception phase may include
— First requirements workshop,
— Planning for the first iteration, and

— Then quickly moving forward to elaboration

Requirements Organized in UP Artifacts

* UP offers several requirements artifacts
- Use case Model: primarily functional requirements
- Supplementary Specification: everything not in use cases (MNon-functional requirements)
— Glossary: defines noteworthy terms (encompassed the concept of the data dictionary)
— Vision: summarizes high-level requirements
* Elaborated in Use-Case Model and Supplementary Specification, and
+ Summarizes the business case for the project.

— Business rules (also called Domain rules): (e.g., government tax laws)

Summary — A short executive overview document for quickly learning the

project's big picture (summary).

Sample Inception Artifacts

Artifact

Comment

Vision and Business Case

Describes the h;ﬁh-level goals and constraints, the business
case, and provides an executive summary.

Use-Case Model

Describes the functional requirements. During ince ption,
the names of most use cases will be identified, and
perhaps 10% of the use cases will be analyzed in detail.

Supplementary Specification

(Mon-functional requirements)

Describes other re quireme nts, most ly non-functional.
During ince ption, it is useful to have some idea of the key
non-functional requirements that have will have a major
impact on the architecture.

Glossary

Key domain te minology, and data dictionary.

Risk List & Risk Management
Plan

Describes the risks (business, technical, resource , sche dule)
and ideas for their mitigation or responsa.

Prototypes and proof-of-conce pis

To clarify the vision, and validate technical ideas.

Iteration Plan

Describeswhal to do in the first elaboration iteration.

Phase Plan & Software
Development Plan

Low -precision guess for elaboration phase duration and
effort. Tools, people, education, and other resources.

Development Case

A description of the customized UP steps and artifacts for
this project. In the UP, one always customizes it for the
project.

These artifacts are only partially completed in this phase.

They will be iteratively refined in subsequent iterations

Isn't That a Lot of Documentation?

* Recall that artifacts should be considered optional.

* Ch Iy th real value for roject,

— Drop those if their worth is not proved

» Since this is evolutionary development,
— Point is not to create complete specifications during this phase,
- Cre initia umen
— Those are refined during the elaboration iterations, in response to invaluable

feedback from early programming and testing

* Most UML diagramming will occur in the next phase - elaboration

Case study - Inception

Introduction

* NextGen POS, with the flexibility to support
= Warying customer business rules,
— Multiple terminal and user interface mechanisms, and

— Integration with multiple third-party supporting systems

Case study - Inception

Business Case

* Existing POS Products

— They do not scale well as terminals and business increase.

— MNone can work in either on-line or ofi-line mode, dynamically adapting depending on
failures.

— Mone easily integrate with many third-party systems,

— MNone allow for new terminal technologies such as mobile PDAs.

— Therei rk
POS that rectifies this.

isf

ion with of affairs, and demand for a

Case study - Inception

Glossary

Term Definition Format Aliases

item A product or service for sale

Payment Validation by an external

authorization payment authorization service
that they will make or guarantee
the payment to the seller.

UpC Numeric code that identifies a 1 2-digit Universal
product. Usually symbolized code of Product Code
with a bar code placed on several

products. subparts

Case study - Inception

Brief format Use Case

* A story of an actor using a system to meet a goal Process Sale:

1.

2
3
4.
5
6

A customer arrives at a checkout with items to purchase.

The cashier uses the POS system to record each purchased item.

The system presents a running total and line-item details.

The customer enters payment information, which the system validates and records.
The system updates inventory.

The customer receives a receipt from the system and then leaves with the items.

Use case

Diagrams
- POST -
Q = | /ey Q=
A AN \Jems AN
Cashier\ /ZLlstﬂmer
Refund
- Purchased Q

=\ . items s @

Relating Use cases

Introduction

* Objective: Relate uses cases with include and extend associations,

in both text and diagram formats.

* Use cases can be related to each other.

= Ex:Asubfunction use case "Handle Credit Payment”

may be part of several regular use cases, such as “Process Sale” and “Process Rental”.

Organizing use cases into relationships

Has no impact on the behavior or requirements of the system.

i ization hanism

= To improve communication & comprehension of the use cases,
— To reduce duplication of text, and

— To improve management of the use case documents

The include Relationship

The include Relationship

* Some partial behavior across several use cases. (most common)
— E.g., Paying by credit occurs in several use cases,
including Process Sale, Process Rental, Contribute to Lay-away Plan.
— Rather than duplicate this text, it is desirable
To separate it into its own subfunction use case, and indicate its inclusion.

— This is simply refactoring and linking text to avoid duplication

* Guideline: Use include
— When you are repeating yourself in two or more separate use cases and

— When you want to avoid repetition

Applying UML: Use Case

Cashier

Lsiome

UML notation:
the base use
case points to
the included usa
case

NDiaarams .

MextGen POS
Process Sale .
wincludes - _sincludes
sincludes
Handle Check “Handla Cash " Handle Credit
Payment Paymant Payment
- '-_ - I) -
) . " wincludes
wincludes sincludes

Process Rental)

Handle Raturms

1 Manage Users

wactors
Accounling
Syslem

w@CiOrs
Credit
Authorization
Service

uc1

The include Relationship
: Process Sale

Main Success Scenario:

1.Customer arnives at a POS checkout with goods and/ or services to
purchase

lJ"-.-Cus‘tcurner pays and System handles pavment, .
Extensiors:
7b, Pavying by credit: Include Handle Credit Payment.

/c. Paying by check: Include Handle Check Payment....

UC7: Process Rental
Extensions:
6b. Paving by credit: Include Handle Credit Payment.
UC12: Handle Credit Payment j Underline indicates |
Level: Subfunction an included use case

Main Success Scenario
1.Customer enters their credit account information.

I.Sxitem sends payment authorization reguest to an extemal Payment
uthonzation S&rvice System, and reguestx payment approvd

3.5ystem receives payment approva and signds approvd 1o Cashier,

Extensiors:

Za, System detects failure to collaborate with extemal system:
System signds error to Cashier,

Cashier asks Customer for altemate payment.

Using include with Asynchronous Event Handling

* Asychronous Events

function, or Web page, or within a range of steps.

* Basic notation is to use a*, b*, ... style labels in the Extensions section

— To imply an extension or event that can happen at any time.

Using include with Asynchronous Event Handling

JC1: Process FooBars

Main Suocess Scenario;

Extensions:

Infor ma tion.

Undedine indicates
an included use case

B*. &t any time, Customer selects printing help: Present Printing Help.

2-11, Customer cancels; Cancel Transaction Confr mation

a*, At anytime, Customer selects to edit personal information: Edit Personal

a7z

Why to use include relationship?

There are other relationships: Extend and Generalization

Cockburn, an expert use-case modeler,

— Advi fer the i ionshi izati

As a first rule of thumb

= Always use the include relationship between use cases.

People who follow “include” have less confusion with their writing than

people who mix include with extend and generalizes [Cockburn01].

Concrete/Abstract Use Cases

* Concrete use case
— Initiated by an actor and performs the entire behavior desired by the actor.
= Are the elementary business process use cases

— Process Sale is a concrete use case.

* Abstract use case

— MNever instantiated by itself; it i f ion hat i f her :
— Handle Credit Payment is abstract; it doesn't stand on its own, but is always part of

another story, such as Process Sale.

Base/Addition Use Cases

« PBase use case

— A use case that includes another use case, or is extended / specialized by ancther use

case.

— Process Sale is a base use case with respect to the included Handle Credit Payment.

* Addition use case

= The use case that is an inclusion, extension, or specialization,

— Handle Credit Payment is the addition use case in the include relationship to Process
Sale.

* Addition use cases are usually abstract. Base use cases are usually concrete.

The extend Relationship

The extend Relationship

. S ; ifi
- Continually modifying the use case with many new extensions and conditional steps is a

maintenance headache
— |t has been base-lined as a stable artifact, and can't be touched.

How to append to the use case?

* Extend relationship allow to create an extending or ition e,

= And within it, describe where and under what condition it extends the behavior of some

base use case.

Applying UML: Use Case

/ " Process Salé__%“"“‘“\
Extension Points: \”|
FPayment
VIP Customer

"

AN wextend»
Payment, if Customer

| presents a gift certificate

Handle Gift c.;tiffééié“>
Payment

- Diagrams .

A

UML notation:
1. The extending use case
points to the base use case.

2. The condition and
extension point can be
shown on the line.

The extend Relationship

Point of
UC1: Process Sale (the base use case) / extension

Extension Points: VIP Customer, step 1. Payment, step 7.

Main Success Scenario:
1.Customer arrives at a POS checkout with goods and for services to purchase

7.Customer pays and System handles payment....

UC15: Handle Gift Certificate Payment (the extending use case)
Trigger: Customer wants to pay with gift certificate.

Extension Points: Payment in Process Sale.

Level: Subfunction

Main Success Scenario:
1.Customer gives gift certificate to Cashier.
2.Cashier enters gift certificate I1D.

4=
r — =

A signature qualrty of extend relatlanship is that the base use case (Process Sale)
e (Handle Gift Certificate Payment)

Use of Extension Point

Extending use case is triggered by some condition.

Extension points are labels in the base use case

- Here, extending use case references as the point of extension

Step numbering of base use case can change without affecting the

extending use case

— Extension point may simply "At any point in use case X"

It is common in systems with many asynchronous events, such as
— A word processor ("do a spell check now," "do a thesaurus lookup now"), or

-~ Reactive control systems.

Prefer Extension Section

* Practical motivation of using the extend technique is

— When it is undesirable for some reason to modify the base use case

Updating the Extensions section is usually the preferred solution,

rather than creating complex use case relationships

Elaboration

Build the core architecture,
Resolve the high-risk elements,
Define most requirements, and

Estimate the overall schedule and resources

Introduction

« Elaboration is the initial series of iterations during project
- ned vision,
— Core, risky software architecture is programmed and tested

— Major risks are mitigated or retired

= More realistic estimates (overall schedule and resources)

+ Elaboration often consists of b/w two and four iterations:

— Each iteration is recommended to be 2~6 week

Not a Design Phase

* Elaboration is not a design phase

— Also not a phase when the models are fully developed in preparation for

implementation (Waterfall)

* During this phase, one is not creating throw-away prototypes

— Rather, Code and design are production-quality portions of the final system

— More commonly it is called the executable architeclure or Architeclural baseline

Key Ideas & Best Practices in Elaboration

Do short time boxed risk-driven iterations
Start programming early

Adaptively design, implement, & test the core and risky parts of the

architecture
Test early, often, realistically
Adapt based on feedback from tests, users, developers

Write most of the use cases and other requirements in detail, through a

series of workshops, once per elaboration iteration

Artifacts

Artifact

Description

Domain Mode|

Visual representation of the domain
model

Design Model

Software Architecture Document

Logical Design Diagrams

Summary of key architectural issuesand
their resolution

Data Model

Database schemas, mapping strategies
between object and non-object
representation

Use-Case Storyboards, Ul Prototypes

User interface description, usablility
models...

Iterations in Elaboration

* In lterative Development
— Don't Implement All the Requirements at once

— Incremental Development for the Same Use Case Across lterations

£ / / 74

A use case or feature is

Use case 1 ‘ 2 3 ‘ . | often too complex to

. | L 1 F complete in one short
implementation “ > v iteration.
may be spread . | Therefore, different parts

Use Case Use Case Use Case or scenarios must be
across iterations Process Sale Process Sale Process Sale allocated to different

'l ’7 iterations.

Use Case

Process Rentals
Feature: -

Logging [—_

Iteration 1 of Elaboration Phase

* Emphasizes a range of fundamental and core OOA/D skills used in

building object systems,

— Such as assigning responsibilities to objects.

Iteration 1 is NOT architecture-centric and risk-driven

Iteration 1 of NextGen POS Application

* Requirements for iteration 1 of the POS application

Entering items and receiving a cash payment.

- Implement a Start Up use case as necessary
To support the initialization needs of the iteration.
— Nothing fancy or complex is handled,
A simple happy path scenario, and the design and implementation to support it.
= No collaboration with external services, such as a tax calculator or product DB.
— No complex pricing rules are applied.

— Design and implementation of supporting Ul, DB, and so forth, would also be done

Planning the Next Iteration

* QOrganize requirements and iterations by risk, coverage, and criticality

— Risk includes both technical complexity and other factors, such as uncertainty

of effort or usability.

— Coverage implies that all major parts of the system are at least touched on in
early iterations perhaps a "wide and shallow" implementation across many

components.

— Criticality refers to functions the client considers of high business value.

Planning the Next Iteration

* |Use cases or use case scenarios are ranked for implementation.

— Early iterations implement high ranking scenarios.

Requirement (Use Comment
Rank Case or Feature)
High Process Sale Scores high on all rankings.
Logging Pervasive. Hard to add late.
Medium | Maintain Users Affects security subdomain.

Low

Domain Model

A visual representation of
conceptual classes or real situation objects

in a domain

Definition

A domain model is a representation of real-world
conceptual classes, not of software components. It is
not a set of diagrams describing software classes,

or software objects with responsibilities.

Introduction

* A domain model

— Most important and classic model in OO analysis.

— A visual representation of conceptual classes or real situation objects in a

domain.
— Also called conceptual models, domain object models, and

analysis object models.

— "focusing on explaining 'things' and products important to a business domain”,

such as POS related things.

* Guidelines

— Avoid a waterfall-mindset (big-modeling effort to make "correct” domain model)

Provides a Conceptual Perspective

* Domain model is illustrated with UML class diagram.

* Domain model provides a conceptual perspective.

— Domain objects or conceptual classes
— Associations between conceptual classes

— Attributes of conceptual classes

* Following elements are not suitable in a domain model

— Software artifacts, such as a window or a DB,

Unless the domain being modeled is of software concepts, such as a model

of graphical user interfaces.

— Responsibilities or methods.

Domain Model :

O A domain model shows real-situation conceptual classes, not software

classes : . A
visualization of a real-world concept in

Sale | the domain of interest

| dateTime itis a mot a picture of a software class

O A domain model does not show software artifacts or classes

G0 SalesDatabase - software arlifact; not part h
'E:'# - of domain model |

i Sale
ﬁ"‘dp | 1 . software class; not pant k
date : of domain model |

time

print{)

cancept
or domain
object

association L

attributes

A

POS Domain Model

Sales

Linalem

quantity

Conltained-in

Sale

date
time

Paid-by
1

FPayment

amaunt

0.1

0.1

Records-sale-of e
4
*
Stocked-in
1
Store
address
name
1
Housas
_I --'I
Register
Caplured-on [

Conceptual Class

* A conceptual class is an idea, thing, or object.
- Symbol words or images representing a concepiual class.
— Intension -the definition of a conceptual class.

— Extension -the set of examples to which the conceptual class applies

* Example of Intension:,

— Customer may be a person or organization that purchases goods or services

* Example of Extension:

— Set of all objects to which the concept applies, e.g. the Customer may be “ John", Tom"

Domain Model «

Sale o | concept's symbaol k
date
lime
"A sale represents the event | - | concept's intension L

of a purchase transaction. It
has a date and time."

sale-2 A - | concepl's extension k

Domain Models and Decomposition

Software problems can be complex;

decomposition—divide-and-conquer—is a common strategy to deal
with this complexity by division of the problem space
into comprehensible units.

In structured analysis, the dimension of decomposition
is by processes or functions.

However, in object-oriented analysis, the dimension of
decomposition is fundamentally by things or entities in the
domain.

Domain Model s

UP Demain Modal
Stakeholder's view of the noteworlhy concepls In the domain,
L‘ Sala
A Payment in the Domain Model . Payment 1 Paysdor 1)
is a concept, but a Payment in g T T | date
Ihe Design Medel is a softwane amaunt time
class. They are not the same
thing, but the farmer inspired the
naming and definition of the L I:Eﬂ;?:)
latter. and
This reduces the representational naATes n
gap.
Sale
This is one of tha big ideas in Payment
object technology. I {4 1 date: Date
1 amount: Moneay - Pays-or = starTime; Time
geiBalance(); Money gatTotal{): Money

UP Design Model
Thie object-orented devoloper has taken mspiration from the real wodd domain
in creating software classes.,

Tharatora, the represantational gap between how stakeholders conceia the
domain, and ilg representation in software, has been lowedad,

J Lower representational gap with OO modeling.

Guideline: Create a Domain Model

* Bounded by the current iteration requirements under design
1. Find the conceptual classes.
2. Draw them as classes in a UML class diagram.
3. Add the association
To record relationships for which there is a need to preserve some memory.
4. Add the attributes

To fulfill the information requirements,

Aggregation and Composition

Aggregation

Definition :

— A special form of association that specifies a whole-part relationship between

the aggregate (whole) and a component part.
The whole is called the composite.
Aggregation is also called "Has-a" relationship

When an object ‘has-a' another object,

— Then you have got an aggregation between them.

Example:
A Library contains students and books.

Aggregation

* Aggregation is shown in UML with a hollow diamond symbol,

* Example:
— A Library contains students and books.

- Relationship b/w library and student is aggregation.
Library Fﬂ Students

Aggregate
Diamond

Association name is often excluded in aggregation relationships
since it is typically thought of as Has-part.

However, one may be used to provide more semantic detail.

Composite Aggregation (Composition)

Composition is a special case of aggregation.

* Definition :

- When an object contains the other object, and if the contained object cannot exist
without the existence of container object, then it is called compaosition.

parent file
Folder 1 - File

Folder could contain many files,

while each File has exactly one Folder parent.
If Folder is deleted, all contained Files are deleted as well.

Composition

* Aggregation is shown in UML with a filled diamond symbol,

* Forinstance,
— Physical assemblies are organized in aggregation relationships,

such as a Hand aggregates Fingers.

Aggregation Vs Composition

Aggregation is a loosely suggests whole-part relationships
Composition is a strong kind of whole-part aggregation

ifyin I I ition i ' ;

— It is quite reasonable to exclude it from a domain model.

Composite Aggregation (Composition)

* A composition relationship implies that

2. The part must always belong to a composite (no free-floating Fingers) and

3. The composite is responsible for the creation and deletion of its parts either by

itself creating/deleting the parts, or by collaborating with other objects.

destroyed. or aftached to another composite (no free-floating Fingers allowed)

Composite Aggregation (Composition)

* For example,

— If a physical paper Monopoly game board is destroyed, we think of the squares as being

destroyed as well (a conceptual perspective).

— Likewise, if a software Board object is destroyed, its software Square objects are

destroyed, in software perspective.

How to identify Composition

* In some cases,
— Presence of composition is obviously in physical assemblies.
’ idelin

1. On composition : If in doubt, leave it out

2. Consider showing composition when:

1. Lifeti i ithi

There is a create-delete dependency of the part on the whole,
2. There is an obvious whole-part physical or logical assembly.
3. Some properties of the composite propagate to the parts, such as the location.

4. Operations applied to the composile propagate to the parts, such as destruction,

movement, recording.

A Benefit of Showing Composition

* Most benefits of composition is relate to the design rather than the analysis
- Thati : e e : ianif

Benefits

1. It clarifies the domain constraints regarding the eligible existence of the
part independent of the whole.

— During design work, this has an impact on the create-delete dependencies
I w ¢l nd DB n

(in terms of referential integrity and cascading delete paths).

1. It assists in the identification of a creator (the composite)
= Using the GRASP Creator pattern.

1. Operations such as copy & delete applied to whole often propagate to the
parts.

Composition in NextGen Domain Model

* |n the POS domain,
— “SalesLineltems” may be considered a part of a complete “sale”

* In general,

— Transaction line items are viewed as parts of an aggregate transaction.

* In addition to conformance to that pattern,
— There is a create-delete dependency of the line items on the Sale

(their lifetime is bound within the lifetime of the sale)

Aggregation in the POS Application

Sale - 1 SalesLineltemn
1 P
Product lo- _ Pmullurft
Catalog 1 i Description

By similar justification

— “"ProductCatalog” is a composite of “ProductDescriptions”

Associations

An association is a relationship between
instances of types that indicates some
meaningful and interesting connection

&7

Associations

Register

O

Records-curment

association |

Sale

Fig 1.Associations

68

Useful Associations

* Associations for which knowledge of the
relationship needs to be preserved for
some duration.

* Associations derived from the Common
Associations List.

69

UML Association Notation

* An association is represented as a line
between classes with an association
name.

* Associations are inherently bidirectional.

* Optional reading direction arrow is only an
aid to the reader of the diagram.

70

UML Association Notation

Repister

ussociation name

“reading direction amow”

it hins me meaning except 1o
imdicate direction of reading the
association Inbel

often exchsded

O

Records-current

O

multiplicity

—_— Sale
1
o

71

Finding Associations-
Common Associations List

The common categories that are worth
considering are:

* Ais a physical part of B . Eg: Wing-Airplane

* Ais a logical part of B. Eg: SalesLineltem-
Sale.

* A is physically contained in B . Eg: Register-
Store.

72

Common Associations List 2

A is logically contained in B.
Eg:ltemDescription-Catalog.

A is a description of B.Eg:ltemDescription-
Item.

A is a line item of a transaction or report
B.Eg:SalesLineltem-Sale.

A is a member of B .Eg: Cashier-Store.
A uses or manages B.Eg:Cashier-Register.

73

Common Associations List 3

* Ais
known/logged/recorded/reported/captured
in B.EQ: Sale-Register.

* A is an organizational subunit of B .
Eg:Department-Store.

* A communicates with B. Eg:Customer-
Cashier.

* Ais next to B. Eg:City-City.

74

Common Associations List 4

A is related to a transaction B. Eg:
Customer-Payment.

A is a transaction related to another
transaction B. Eg:Payment-Sale.

A Is next to B. Eg:City-City.
A Is owned by B. Eg:Register-Store.
A Is an event related to B. Eg:Sale-Customer.

75

High-Priority Associations

* Ais a physical or logical part of B.

* Ais physically or logically contained in/on
B.

* Ais recorded in B.

76

Associations Guidelines

* The knowledge of the relationship needs
to be preserved for some duration.

* |dentifying conceptual classes is more
important than identifying associations.

* Avoid showing redundant or derivable
associations.

7

Roles

* Each end of an association is called a
role.
* Roles may have
— name
— multiplicity expression
— Navigability(know about each other)

78

Multiplicity

* Multiplicity defines the number of
instances of a class A ,that can be
associated with one instance of class B,at
a particular moment.

* Eg: In countries with monogamy laws,a
person can be married to 1 person at any
particular time.But over a span of time one
person can be married to many persons.

79

Multiplicity

Swocks
Sione f— — ltemi

Fig 3 Multiplicity on an association.

Multiplicity

_] T FETO Oof HiRarT)
- "
| L
—_—] T | uneor mor
1.40
T ane o HY
5
— 1 wactly 3
5%
1 tly 3,5

Fig 4. Multiplicity values.

81

Naming Associations

* Name an association based on
TypeName-VerbPhrase-TypeName
format.

* Names should start with a capital letter.

* Legal formats are:
— Paid-by
— PaidBy

a2

Associations Names

Sware

Assipned-n

Sale

Flight

Plane

Fig 5.Association names.

Multiple Associations

* Two types may have multiple associations
between them.

Multiple Associations

Flight

Flies-to

* Flies-from

Airport

Fig 6. Multiple associations.

85

Implementation

* The domain model can be updated to
reflect the newly discovered associations.

* But,avoid updating any documentation or
model unless there is a concrete
justification for future use.

Defer design considerations so that
extraneous information is not included and
maximizing design options later on.

88

Cleaning Associations 1

* Do not overwhelm the domain model with
associations that are not strongly required.

* Use need-to-know criterion for maintaining
associations.
* Deleting associations that are not strictly

demanded on a need-to-know basis can
create a model that misses the point.

a7

Cleaning Associations 2

* Add comprehension-only associations to
enrich critical understanding of the
domain.

88

A partial domain model

Huevords-sale-ol

Sales
Lineltem

Descrilacil-by

Prioslsct

P
Eomnuimline
1 bi.™
Ll -ty
Storg
1 SHiowks
i
Laigisa i
[ERT TR L]
Flaoiises
i.®
Meyrinicr

Initiaied-hy

.=
Croavtmb el in
1
Sale -
]
1
1 1
Fabdhoy
]

Paymens

LM TER AR Ty

Hiamed-Iy

Kovords-snlos-omn

Speciica

Canhaer

Prowduic

Edeneribas

liem

a9

Without need-to-know
associations

LR ESTE BT

Froslin Wreosilisgn

Camniaans A peedioatbon

Plossribas

...........

llllllllllllll

L]

uuuuuuu

i b mied-Try

Conclusion

* When in doubt if the concept is
required,keep the concept.

 When in doubt if the the association is
required,drop it.

* Do not keep derivable association.

o1

